
Chronic Disease: How CBD Can Help.
Chronic diseases—including cardiovascular disease, cancer, diabetes, rheumatoid arthritis, IBD, neurodegenerative disorders, and mental illness—are pervasive and often deadly. Five chronic diseases account for roughly two-thirds of U.S. deaths, and multimorbidity is common in both older and younger adults.1–7 Care is complicated by long-term management needs, polypharmacy, adverse drug events, and poor adherence—issues linked to substantial morbidity and mortality.8–12
Lifestyle therapies (nutrition, movement, sleep, stress reduction) remain foundational but can be slow to implement or sustain.13–18 As interest in complementary strategies grows, emerging research points to cannabidiol (CBD) as a potential adjunct for symptom relief, quality-of-life improvements, and, in some cases, disease-modifying effects.
Why CBD Might Help
CBD interacts with the endocannabinoid system (ECS)—CB1/CB2 receptors and endogenous ligands—and also modulates non-ECS targets (e.g., TRP channels, PPARγ, 5-HT1A).19–25 Mechanisms relevant to chronic disease include:
- Antioxidant effects: lowers reactive oxygen species, activates Nrf2, and increases endogenous antioxidants (e.g., SOD).26–31
- Anti-inflammatory actions: downregulates cytokines and inflammatory pathways; immunomodulatory effects on innate/adaptive cells.26–30,57–65
- Neuroprotective & cytoprotective signaling: supports mitochondrial function, reduces apoptosis, and may promote neurogenesis/synaptic plasticity.31–35,45–56
Condition-Specific Highlights
Diabetes & Metabolic Health
Preclinical and early clinical work suggests CBD may influence insulin resistance, glucose metabolism, inflammation, and components of metabolic syndrome. Small human trials report signals for improved glycemic control and lipids, with additional evidence for complication mitigation (neuropathy, myocardial dysfunction).37–44
Neurodegenerative Disorders
Across models of Alzheimer’s and Parkinson’s disease, CBD demonstrates anti-inflammatory and antioxidant actions; may affect Aβ/tau, inhibit α-synuclein aggregation, protect dopaminergic neurons, and support neuroplasticity. Some studies note improvements in non-motor symptoms and quality of life, though larger clinical trials are needed.45–56
Autoimmune & Inflammatory Diseases
CBD’s immunomodulatory effects—cytokine regulation, CB2-mediated signaling—suggest potential in MS, RA, and IBD. In arthritis models, CBD reduced synovitis, pain, and structural damage; in MS, studies suggest benefits for pain, spasticity, mobility, mood, and fatigue.57–65
Epilepsy
CBD is established for Dravet, Lennox-Gastaut, and TSC-associated seizures, reducing seizure frequency in multiple trials. Mechanisms may involve 5-HT1A receptors, intracellular Ca2+ modulation, adenosine signaling, and network excitability. Adjacent benefits can include sleep and mood stabilization.66–74
Cardiovascular Disease
CBD exhibits vasodilatory, anti-inflammatory, and antioxidant effects, protecting endothelium in adverse metabolic/inflammatory contexts and enhancing NO-mediated vasorelaxation. Early human work shows blood-pressure signals—especially under stress—and increased cerebral blood flow in stroke contexts; confirmatory trials are ongoing.75–85
Cancer
In preclinical models, CBD modulates multiple oncogenic pathways (invasion, angiogenesis, proliferation), induces autophagy/apoptosis, and may augment chemo-/radiotherapy while protecting normal tissues. Clinically, CBD can help with symptom clusters (pain, neuropathy, anxiety, sleep disturbance, nausea) and quality of life.86–95
Mood & Anxiety Disorders
Early clinical data support anxiolytic, antipsychotic, and antidepressant-like effects, with changes in cerebral blood flow and stress biomarkers. Some studies suggest relatively rapid onset of mood benefits compared with standard pharmacotherapy.96–106
Clinical Considerations
- Safety: Generally well tolerated; common AEs include GI upset, somnolence, appetite changes.24,27
- Interactions: CBD can inhibit CYP3A4/CYP2C19/CYP2D6; review polypharmacy carefully (e.g., anticoagulants, antiepileptics, antidepressants).24,25
- Dosing: Highly context-dependent across indications and products; start low/titrate; use standardized, third-party-tested formulations.
Bottom Line
CBD’s multi-target pharmacology—spanning antioxidant, anti-inflammatory, neuroprotective, vascular, and immunomodulatory effects—makes it a promising adjunct for chronic disease care. While robust, indication-specific RCTs are still needed to define long-term efficacy, dose, and comparative effectiveness, current evidence supports thoughtful, monitored integration alongside guideline-based lifestyle and pharmacologic therapies.
References
- CDC NCHS. Multiple Cause of Death 2018–2022. 2024.
- Fong JH. BMC Geriatr. 2019;19(1):323.
- CDC NCHS. Mortality in the United States, 2022. 2024.
- Watson KB et al. Prev Chronic Dis. 2024;21:E46.
- Lochner KA, Cox CS. Prev Chronic Dis. 2013;10:120137.
- Watson KB et al. MMWR. 2022;71(30):964-970.
- Garcia-Olmos L et al. PLoS One. 2012;7:e32141.
- Garin N et al. Sci Rep. 2021;11:883.
- Almodóvar AS, Nahata MC. JMCP. 2019;25:573-577.
- Doos L et al. Fam Pract. 2014;31:654-663.
- Burnier M. Eur J Intern Med. 2024;119:1-5.
- American Society of Pharmacovigilance. 2025.
- StatPearls. 2025.
- Willett WC et al. DCP2. 2006.
- Neuhouser ML. Nutr Res. 2019;70:3-6.
- Oster H, Chaves I. Nutrients. 2023;15:4627.
- Khan TA et al. Diabetes Care. 2023;46:643-656.
- Habibović M et al. JMIR Res Protoc. 2018;7:e40.
- Naya NM et al. Molecules. 2023;28:5980.
- Whiting PF et al. JAMA. 2015;313:2456-2473.
- Laprairie RB et al. Br J Pharmacol. 2015;172:4790-4805.
- Lu HC, Mackie K. Biol Psychiatry CNNI. 2021;6:607-615.
- Peng J et al. Basic Clin Pharmacol Toxicol. 2022;130:439-456.
- Meissner H, Cascella M. StatPearls. 2025.
- Chayasirisobhon S. Perm J. 2020;25:1-3.
- Atalay S et al. Antioxidants. 2019;9:21.
- Iffland K, Grotenhermen F. Cannabis Cannabinoid Res. 2017;2:139-154.
- Rajesh M et al. JACC. 2010;56:2115-2125.
- Juknat A et al. PLoS One. 2013;8:e61462.
- Booz GW. Free Radic Biol Med. 2011;51:1054-1061.
- da Silva VK et al. Transl Psychiatry. 2018;8:176.
- Yang L et al. Free Radic Biol Med. 2014;68:260-267.
- Hammell DC et al. Eur J Pain. 2016;20:936-948.
- Hill AJ et al. Pharmacol Ther. 2012;133:79-97.
- National Academies. 2017.
- Britch SC et al. Psychopharmacology. 2021;238:9-28.
- Zhang J et al. Exploration (Beijing). 2023;3:20230047.
- Jadoon KA et al. Diabetes Care. 2016;39:1777-1786.
- Mattes RG et al. Diabetes Spectr. 2021;34:198-201.
- Hegde VL et al. J Immunol. 2015;194:5211-5222.
- Stienstra R et al. PPAR Res. 2007;2007:95974.
- Blaschke F et al. ATVB. 2006;26:28-40.
- Xiong W et al. J Exp Med. 2012;209:1121-1134.
- Costa B et al. Eur J Pharmacol. 2007;556:75-83.
- Bhunia S et al. Front Pharmacol. 2022;13:989717.
- Raïch I et al. Alzheimers Res Ther. 2025;17:109.
- Iuvone T et al. CNS Neurosci Ther. 2009;15:65-75.
- Marques BL, Campos AC. Int Rev Neurobiol. 2024;177:121-134.
- Esposito G et al. PLoS One. 2011;6:e28668.
- Esposito G et al. Neurosci Lett. 2006;399:91-95.
- Esposito G et al. Br J Pharmacol. 2007;151:1272-1279.
- Costa AC et al. Brain Sci. 2022;12:1596.
- Bogale TA et al. Front Immunol. 2021;12:611761.
- Wang L et al. Neuroscience. 2022;498:64-72.
- Hafida EG et al. Open Med (Wars). 2024;19:20241075.
- Peres FF et al. Front Pharmacol. 2018;9:482.
- Mujahid K et al. Saudi Pharm J. 2025;33:11.
- Nichols JM, Kaplan BLF. Cannabis Cannabinoid Res. 2020;5:12-31.
- Giorgi V et al. Immunotargets Ther. 2021;10:261-271.
- Atzeni F et al. Pharmacol Res. 2019;149:104402.
- Fonseca JE et al. Autoimmun Rev. 2009;8:538-542.
- Malfait AM et al. PNAS. 2000;97:9561-9566.
- Gui H et al. Immunobiology. 2015;220:817-822.
- Rudroff T, Sosnoff J. Front Neurol. 2018;9:183.
- El-Alfy AT et al. Pharmacol Biochem Behav. 2010;95:434-442.
- von Wrede R et al. Clin Drug Investig. 2021;41:211-220.
- Rosenberg EC et al. Epilepsy Behav. 2017;70:319-327.
- Gray RA, Whalley BJ. Epileptic Disord. 2020;22(S1):10-15.
- Klein BD et al. Neurochem Res. 2017;42:1939-1948.
- Martínez-Aguirre C et al. Front Behav Neurosci. 2020;14:611278.
- Klotz KA et al. CNS Drugs. 2021;35:1207-1215.
- Lamonarca J et al. Epilepsy Behav. 2024;160:110032.
- Metternich B et al. Epilepsy Behav. 2021;114:107558.
- Patra PH et al. Epilepsia. 2019;60:303-314.
- Naya NM et al. Expert Opin Investig Drugs. 2024;33:699-712.
- Stanley CP et al. Br J Clin Pharmacol. 2013;75:313-322.
- Montecucco F, Di Marzo V. Trends Pharmacol Sci. 2012;33:331-340.
- Stanley CP et al. Cardiovasc Res. 2015;107:568-578.
- Sultan SR et al. Br J Clin Pharmacol. 2020;86:1125-1138.
- Toot JD et al. Stress. 2011;14:33-41.
- Resstel LB et al. Br J Pharmacol. 2009;156:181-188.
- Sultan SR et al. Front Pharmacol. 2017;8:81.
- Jadoon KA et al. JCI Insight. 2017;2:e93760.
- Tuma RF, Steffens S. Curr Pharm Biotechnol. 2012;13:46-58.
- Hayakawa K et al. Pharmaceuticals. 2010;3:2197-2212.
- O’Brien K. Cancers (Basel). 2022;14:885.
- Mashabela MD, Kappo AP. Int J Mol Sci. 2024;25:5659.
- Heider CG et al. Biology (Basel). 2022;11:817.
- Seltzer ES et al. Cancers (Basel). 2020;12:3203.
- Massi P et al. J Pharmacol Exp Ther. 2004;308:838-845.
- Torres S et al. Mol Cancer Ther. 2011;10:90-103.
- Massi P et al. J Neurochem. 2008;104:1091-1100.
- Solinas M et al. PLoS One. 2013;8:e76918.
- Hernán Pérez de la Ossa D et al. PLoS One. 2013;8:e54795.
- Green R et al. Int J Mol Sci. 2022;23:12956.
- García-Gutiérrez MS et al. Biomolecules. 2020;10:1575.
- Wieckiewicz G et al. Front Psychiatry. 2022;13:837946.
- Shannon S et al. Perm J. 2019;23:18-041.
- Blessing EM et al. Neurotherapeutics. 2015;12:825-836.
- Bergamaschi MM et al. Neuropsychopharmacology. 2011;36:1219-1226.
- Rapin L et al. J Cannabis Res. 2021;3:19.
- Dahlgren MK et al. Commun Med. 2022;2:139.
- de Mello Schier AR et al. CNS Neurol Disord Drug Targets. 2014;13:953-960.
- Crippa JA et al. Front Immunol. 2018;9:2009.
- Russo EB et al. Neurochem Res. 2005;30:1037-1043.
- Sales AJ et al. Mol Neurobiol. 2019;56:1070-1081.